
www.manaraa.com

Efficient Data Management in Support of Shortest-Path
Computation

Alexandros Efentakis
Institute for the Management

of Information Systems
G. Mpakou 17

11526 Athens, Greece
efentakis@imis.athena-

innovation.gr

Dieter Pfoser
Institute for the Management

of Information Systems
G. Mpakou 17

11526 Athens, Greece
pfoser@imis.athena-

innovation.gr

Agnès Voisard
Free University Berlin

Takustr. 9
14195 Berlin-Dahlem,

Germany
Agnes.Voisard@fu-

berlin.de

ABSTRACT
While many efficient proposals exist for solving the single-pair
shortest-path problem, a solution that sees the algorithmic solu-
tion in combination with efficient data management has received
considerably little attention.

This work proposes a data management approach for efficient
shortest path computation that exploits road network hierarchies.
Hierarchies allow us to minimize the portion of the network that is
kept in main memory. This approach is insensitive to changes to
the network as it does not rely on any pre-computation, but only on
given road network properties. In that we specifically target large
road networks that exhibit a high degree of change (e.g., Open-
StreetMap).

Extensive experimental evaluation shows that the presented solu-
tion is both efficient and scalable and provides competitive shortest-
path computation performance without requiring a preprocessing
stage for the road network graph.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms; H.2.8 [Database Ap-
plications]: Spatial databases and GIS

General Terms
Algorithms

Keywords
Shortest Path computation, HBA*, Cell Manager, OpenStreetMap,
Relational Databases

1. INTRODUCTION
Although many previous publications introduced fast algorithms

for shortest-path (SP) computation ([7, 14, 28, 33, 13, 9, 10, 19,
21, 30, 3, 8, 26]), most authors assume that the entire road network
graph resides in main memory. Additionally, many preprocessing
algorithms, such as the ALT [9], Highway Hierarchies [30] or Arc-
flags [21] require the storage of additional information related to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS 2011 Chicago, Illinois, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

the algorithm (Landmark information, shortcuts, arc-flags) to com-
plement the original road network graph. Others like Contraction
Hierarchies [8] compact the original road network for SP computa-
tion but still need additional information to output the actual short-
est path. For a broad overview of shortest path speed-up techniques
up to 2008, one can refer to [31].

On the other hand, through crowdsourcing road network graphs
are evolving rapidly (150.000 new ways are added to Open Street
Map data on average per day [25]) and therefore preprocessing al-
gorithms have to recompute their data structures frequently to keep
providing accurate results. Additionally, edge weights may change
over time to represent fluctuations in traffic conditions. These weights
are common referred to as speed profiles. Therefore different ver-
sions of the same road network are required for SP computation
depending on the time of the day and vastly increasing the memory
size required to store the road network graph.

Compared to the literature devoted to engineering algorithms for
shortest paths, little attention has been paid to engineering an effi-
cient storage mechanism, i.e., the road network graph is not com-
pletely loaded into main memory but is instead fetched from sec-
ondary storage. Using a simple mechanism, which fetches nodes as
required during SP computation is not an option since a bi-directed
Dijkstra search within a city limits may require hundred of thou-
sands node expansions. Performing so many requests within a rea-
sonable time (fractions of a second) is far too challenging for any
database or file system. Consequently, road network data should be
fetched in "batches", i.e., tiles, to minimize the number of queries
to secondary storage.

Such an efficient storage manager for SP algorithms will be in-
valuable in the traditional routing server scenario, with a single
computer (or a cluster thereof) serving routing requests from many
clients. As more road network data through crowd-sourcing (such
as OpenStreetMap) is freely available, it will be difficult to store
the entire dataset (world) in main memory. Here, the algorithm’s
data structures are kept in main memory and road network data is
fetched on demand. The need for handling many parallel requests
points us towards a database-backed mechanism that can efficiently
handle the number of requests necessary to load road network data
into main memory.

The main contribution of this paper is to propose an efficient
storage manager to support shortest-path computation in connec-
tion with large road network datasets stored on disk. Although this
mechanism is routing algorithm neutral, i.e., it would work with
any traditional routing algorithm like Dijkstra or A∗ , it will be
significantly faster and more efficient when combined with a hier-
archical algorithm, such as HBA∗ [26]. The objective of this work

www.manaraa.com

is not to showcase a new SP algorithm that outperforms existing so-
lutions, but to introduce an effective data management mechanism
in combination with an hierarchical routing algorithm like HBA∗ to
minimize the portion of the road network that is kept in main mem-
ory. Since the road network graph is used as is, no SP algorithm-
specific preprocessing is required and therefore our solution can
be used even with dynamic speed profiles, i.e., a dynamic weight
database of the road network graph that changes over time [27].

The remainder of this work is structured as follows. Section 2
briefly surveys SP computation and specifically the HBA∗ algo-
rithm. Exploiting hierarchical networks, our data management ap-
proach, the Cell Manager is detailed in Section 3. Section 4 de-
scribes the environment and data used in the experimentation and
Section 5 presents the results when comparing the proposed data
management approach used in connection with HBA∗ and bi-directed
Dijkstra SP computation. Section 6 surveys related work and Sec-
tion 7 gives conclusions and directions for future work.

2. SHORTEST-PATH COMPUTATION AND
THE HBA* ALGORITHM

In this section we will describe some basic concepts used at the
course of this paper. We will also present the basic properties of
HBA∗ algorithm, a hierarchical bidirected A* variant initially pre-
sented at [26] and propose additional ways to fine-tune its perfor-
mance.

2.1 The Single Pair Shortest-Path Problem
A road network is modelled as a directed graph G = (V, E),

whose vertices/nodes V represent intersections and edges E repre-
sent links between intersections. Additionally, a real-valued weight
function w : E → R is given, mapping edges to weights, with
weights typically corresponding to travel times. Given a path p =

〈v0, v1, . . . , vk〉 in G, the weight of the path is the sum of the weights
of its constituent edges w(p) =

∑k
i=1 w(vi−1, vi). The weight δ(s, t)

of a shortest path between vertices s and t is defined as:

δ(s, t) =

{
min{w(p) : p a path from s to t}
∞ (i f no path f rom s to t exists)

}
(1)

A shortest path from s to t is any simple path p with w(p) =

δ(s, t) [6].
Assume a directed graph with non-negative edge weights w(u, v) ≥

0 is given. The single-pair shortest path problem (SPSP) of find-
ing a shortest path between a source vertex s and a target ver-
tex t can always be solved by applying the greedy Dijkstra’s al-
gorithm [7]. Shortest path search can be improved by exploiting
knowledge about the structure of the underlying graph. The A∗ al-
gorithm [14] (also known as heuristic search) selects the next node
u to be expanded by using the cost d(u) of a shortest path from s
to u (Dijkstra) in combination with the estimated cost to the goal,
h(u, t). A∗ is guaranteed to find the optimal solution provided h
never overestimates the real cost of reaching the target.

In [26] the HBA∗ algorithm was introduced to efficiently solve
the SPSP problem by exploiting road network hierarchies to achieve
faster computation times and efficient memory usage. HBA∗ is a
variant of a bi-directed A∗ algorithm to compute a shortest path
from nodes s to t in a hierarchical road network. What follows is a
brief discussion of road network properties and a short description
of the algorithm.

2.2 Hierarchical Road Networks
Roadmap data available from vendors usually provides road cat-

egory information for each road segment/edge. A typical example

Figure 1: Typical route for driving from one neighbourhood to another

of road categories on a road network, may include categories such
as “Freeway”, “Major Road” or “Local Road”. In the road net-
works used in this paper, low numbers were assigned to higher road
categories, i.e., the highest road category was “1: Freeway” and
the lowest was “9: Other Road” for the commercial road networks
used. The road networks used in all experiments, are described in
Section 4.1

This road category information gives rise to interpret the net-
work as a hierarchical road network: Level Li of the road network
consists of all road segments of road categories j ≤ i, including
all nodes incident to those segments. Let G = (V, E) be the whole
road network with vertex/node set V and road segment/edge set E,
and let Li = (Vi, Ei). Then Vi ⊆ Vi+1 and Ei ⊆ Ei+1 for all i, and
V = ∪iVi and E = ∪iEi.

To best understand the significance of hierarchical road networks,
consider the typical example of how roads of varying importance
would typically be used in a routing task by a human. Figure 1
gives an example of driving from one neighbourhood in Athens
(Kallithea) to another (Moschato). The route length is 3.45km. The
route consists of links of varying categories shown in Table 2.

The route starts at level 6 (gray) and continues on levels 5 (pur-
ple), 3 (blue), 4 (green), 5 (purple) and arrives at level 6 (gray).
Such a route represents a typical behaviour of a driver searching
for a route between two locations: First, he searches for a major
road connecting the two areas of interest, and then he finds access
roads to those major roads [4].

The basic question that needs to be addressed is how we can
mimic such route finding behaviour in SP algorithms.

2.3 The HBA* algorithm
HBA∗ algorithm emulates the typical route finding behaviour by

alternating between running an A∗ algorithm from s to t (the “for-
ward search”), as well as an A∗ algorithm from t to s (the “reverse
search”) in the reverse graph (the graph with each edge reversed).
Each of those searches utilizes hierarchical jumping, a technique
that favours the use of the higher-category roads to reduce the over-
all search space and to significantly improve the running time of
shortest-path computation.

On hierarchical jumping we split roads in two different cell lev-
els. The first upper cell level includes only roads of higher impor-
tance (highways, major roads etc) and the second lower cell level
includes the whole road network. If one of the opposite A∗ searches
expands a node and the edge leading to this particular node belongs
to the upper cell level, it ignores all outgoing edges (smaller roads)
that do not belong to this cell level. Therefore only nodes being
reachable by same or higher category edges are visited during node
expansion. Additionally, if one of the two A∗ searches is on the
upper cell level and the opposite A∗ search is not, it freezes until
the opposite search reaches the same upper cell level. That par-
tially ensures, that when the two searches meet, they meet at the
upper cell level i.e., at a road of a higher category. By adjusting

www.manaraa.com

which road categories are assigned to the upper cell level, we can
effectively manipulate the quality of results that HBA∗ produces in
contrast to the nodes expanded during the search. Therefore, if all
available road categories were assigned on the upper cell level, then
the HBA∗ algorithm would fall back into a standard bi-directed A∗

search.
If π f (u) is the Euclidean distance of node u from target node t

divided by the maximum speed of the road network (for travel time
metric) and πr(u) is the Euclidean distance of node u from start
node s divided by the maximum speed of the road network, π f and
πr give lower bounds for forward and reverse search respectively.
Similar to [15], HBA∗ uses p f (u) =

π f (u)−πr (u)
2 as the potential func-

tion for the forward search and pr(u) =
πr (u)−π f (u)

2 = −p f (u) for the
reverse one. Although p f and pr usually do not give lower bounds
as good as π f and πr, they are feasible and consistent and there-
fore when used in a standard bi-directed A∗ search provide optimal
results.

Analogous to [9] the HBA∗ algorithm maintains the length µ of
the shortest path seen so far. Initially, µ = ∞. When an edge (u,w)
is scanned by the forward search and w has already been scanned
in the reverse direction, we know the length ds(u) of path s − u and
length dt(w) w-t path respectively. If µ > dsu + w(u,w) + dtw, we
have found a shorter path than those found before, so we update
µ and its path accordingly. Similar updates are done during the
reverse search. The HBA∗ algorithm terminates when the search in
one direction expands a vertex that has already been scanned in the
opposite direction.

By using the aforementioned techniques, the HBA∗ algorithm
mimics human driving behavior (Figure 1), i.e., when given the
choice, it selects higher category roads to reach a destination.

The advantage is that since we effectively reduce the overall size
of the road network with hierarchical jumping, fewer nodes need to
be subsequently expanded and the performance of the algorithm in
terms of memory consumption and computation speed is dramati-
cally improved. On a route similar to Figure 1, during the middle
portion of the search, the number of nodes that have to be evalu-
ated is dramatically reduced. This is further evident when examin-
ing the number of nodes in a per-category basis of a road network.
70% and 50% of all nodes in the case of Athens and Vienna, re-
spectively belong to the lowest category (local road of minor im-
portance)! Thus, by eliminating this portion of the road network
the performance of a SP search will be considerably improved.

2.4 Tuning HBA* Behavior
An important issue when using hierarchical jumping in SP com-

putation is that it may eliminate candidate solutions and provide
suboptimal results. To address this potential issue, the concept
of initialization buffer was introduced in [26]. Assuming that we
want to compute a SP from node s to t, the initialization buffer I(ε)
around both s and t prevents the use of hierarchical jumping for all
vertices u ∈ I(ε) : {dist(u, t) < ε ∨ dist(u, s) < ε}.

In [26] a simple Euclidean distance measure is used to quantify
the initialization buffer. Although this approach is feasible, it is not
optimal, since for every node expanded by the forward search, the
algorithm needs to maintain the euclidean distance from s to the
expanded node u. The same applies to every node u expanded by
the reverse search with respect to target node t.

However, HBA∗ “knows” for each node it expands the cost d(u)
to reach this node from origin of search. Hence, a better alterna-
tive is to use d(u) directly to determine whether u is within the
initialization buffer area. What needs to be established is the opti-
mal initialization buffer ε in terms of cost (travel time) rather than
distance.

(a) Quality of HBA∗ results for various ini-
tialization buffer sizes (Vienna)

(b) Nodes expanded difference between
bidirected Dijkstra and HBA∗ for various
initialization buffer diameters (Vienna)

Figure 2: Buffer initialization diameters experiments for Vienna

To identify the optimal ε, we compared the quality of bi-directed
Dijkstra and HBA∗ results for 1000 SP computations for the road
networks of Athens, Greece and Vienna, Austria, and varying ε
ranging from 120 to 420 seconds of travel time. The measured pa-
rameters are (a) the quality of results Q and (b) the relative number
of expanded nodes. Q is computed as follows.

Q =
δHBA∗ (s, t) − δDi jkstra(s, t)

δDi jkstra(s, t)
(2)

The results for Vienna (results for Athens were almost identical
and therefore are omitted) presented in Figure 2 show that an in-
crease of ε leads to a logarithmic increase in the quality of HBA∗

results (thus decreasing the gap between the optimal results found
by bi-directed Dijkstra and HBA∗ algorithm). It also results in a
linear increase in the number of nodes expanded by HBA∗ . Hence,
ε = 300s is a good compromise for HBA∗ to (a) find almost optimal
results and (b) still expand less than 40% of the nodes bi-directed
Dijkstra does. Note that 300s is also a logical time span for neigh-
bourhood searches, i.e., routes for which a driver would exploit all
available roads rather than use hierarchical jumping. Consequently,
300s is the initialization buffer used in all experiments of Section 5.

3. DATA MANAGEMENT AND
HIERARCHICAL NETWORKS

The objective of this work is to develop an efficient storage man-
ager for hierarchical road network data for use with SP algorithms.
After the discussion of the HBA∗ algorithm, this section focusses
on the design of respective data management techniques that ex-
ploit the structure of hierarchical networks.

In a traditional routing server scenario, a server receives rout-
ing requests from numerous clients. The server is assumed to have
enough main memory (MM) for the routing algorithm’s data struc-
tures with road network data being fetched on demand. The need
for many parallel requests pointed us towards a RDBMS based
mechanism. In this work, we propose an effective storage man-
ager that fetches road network data packed in cells from secondary
storage for use with SP routing algorithms. A database as the un-
derlying storage mechanism was also chosen to experiment with
varying cell schemas and size. In this context, we refer to this stor-

www.manaraa.com

age manager as the Cell Manager (CM).
In a nutshell, we model the road network graph by means of a

hierarchical partitioning schema as a set of hierarchical cells. In
connection with the HBA∗ algorithm and its hierarchical jumping
mechanism, hierarchical cells reduce the portion of the road net-
work that is kept in memory, i.e., why load lower category edges
when the algorithm has already “jumped” to higher categories.

3.1 Hierarchical Partitioning
Hierarchical jumping as used by the HBA∗ can be conceptual-

ized as shown in Figure 3. Here, the same road network is shown
at different levels of abstraction. The network on top includes only
higher category roads, while the network at the bottom includes
also lower category roads. Following the route example from Sec-
tion 2.2, after initially moving on lower category roads, when mov-
ing to higher categories one essentially chooses to ignore lower
category roads until getting close to the destination.

Higher level
network only

Lower level
network

same
major road

Figure 3: Road network hierarchy

The advantage is that since we effectively reduce the overall size
of the road network with each hierarchical jump, fewer nodes need
to be subsequently explored and the performance of the algorithm
in terms of memory consumption and computation speed is dramat-
ically improved.

To be able to exploit this behavior in data management, we par-
tition the road network graph, both, with respect to space and hi-
erarchy. The road network is partitioned into a regular number of
cells. Each cell should typically contain the same number of nodes
and edges. Hierarchical partitioning refers to considering edges
of a certain category (highways, neighbourhood roads etc.) for a
specific spatial partitioning resulting into two separate cell levels.
A cell belonging to the Upper Cell Level (UCL) contains high ca-
pacity roads (low category numbers, cf. Section 2.2). A cell of the
Lower Cell Level (LCL) contains all available roads.

The mapping of road categories (those defined by the road net-
work data vendor) to UCL may change and depends on the specific
road network and its size and roads distribution per road category.
In our experimentation we use commercial road networks (Athens
and Vienna) for which road categories 1 to 5 are mapped to the
UCL, while for the OSM road network of Germany road categories
1 to 7 belong to the UCL. This flexibility is necessary, since dif-
ferent road network vendors use a different categorization for road
networks.

3.2 Spatial Partitioning
Apart from the hierarchical decomposition of the road network

graph we need to consider the spatial partitioning of the graph, i.e.,
how many nodes a cell contains. Too many nodes per cell mean
unnecessary data is moved through the network, too few and the
number of requests to the CM increase. The authors in [32] suggest
medium-sized cells as the best choice. In our case, experimentation
showed that we obtain best results for each cell containing roughly
hundred nodes.

Having established the best choice number of nodes per cell ν,
we need to enforce this choice for both cell levels. The number
of cells per cell level c(l), with l = {l ∈ L; L = {UCL, LCL}} is
calculated as follows.

c(l) =
n(l)
ν

(3)

where n(l) is the total number of nodes assigned to cell level
l. Consequently, c(l) is related to the cell level’s available nodes.
Additionally, for UCL the total number of cells depends on the road
categories assigned to this level.

Having established some soft limits for c(l), we have to resolve
how nodes are assigned to cells. Here we have two choices. Ei-
ther, we use a regular rectangular grid where all cells of the same
cell level have the exact same size for a particular road network or
we use a tool such as METIS [17] for partitioning the road network
graph for each cell level. METIS is a set of serial programs for par-
titioning graphs, partitioning finite element meshes, and producing
fill reducing orderings for sparse matrices. The algorithms imple-
mented in METIS are based on the multilevel recursive-bisection,
multilevel k-way, and multi-constraint partitioning schemes [18].
METIS was originally intended for parallel processing where par-
titions should have close to equal size and small boundaries to re-
duce communication volume between cells (i.e., minimizing cross
edges between cells).

To compare the two partitioning schemas, we also added another
prerequisite. The extent of a UCL cell is to be uniformly divided
into the same number of cells at the lower cell level, i.e., c(UCL) =

k2 × c(LCL).
In the case of the Athens network, UCL, by including categories

1-5, contains 20,101 nodes. With ν = 100, c(UCL) = 200 ≈
14 × 14. LCL, containing all nodes, contains 140,633 nodes. Here
c(LCL) = 1406 ≈ 37 × 37. By approximation on both cell levels,
UCL uses a rectangular grid of 13x13 and LCL a grid of 39x39. In
this way each cell on both levels contains about 100 nodes and a
UCL cell covers exactly 9 LCL cells.

A UCL cell may cover a larger geographical area, but still occupy
the same memory size than a LCL cell since it has less detail. HBA∗

in exploiting hierarchies will mostly request UCL nodes. Provided
that UCL cells are larger (since they cover a bigger geographical
area) but contain only a subset of all available nodes and edges
(since they include only major roads and their intersections), the
total number of cells loaded will be significantly lower when com-
pared to A∗ or Dijkstra algorithms. Figure 4 illustrates the cells be-
ing loaded for a search similar to that of Figure 1. All cells contain
roughly the same number of nodes and edges. Larger cells belong
to the UCL and cover only high-capacity roads. During the middle
portion of the search (jumping to UCL), only the UCL portion of
the network is evaluated and only larger cells are retrieved, while
for the beginning and the end of the search small cells of the LCL
are fetched.

Figure 4: Paths and varying network levels

Using METIS we split the Athens road network graph of roads
as follows, c(UCL) = 169 ≈ 13×13 and c(LCL) = 1521 ≈ 39×39.
As a remark, the METIS splitting even for the larger road network
of Germany takes less than 30s on an average workstation.

www.manaraa.com

Figure 5: Hierarchical partitioning of road network

The obvious advantage of the METIS partitioning is that truly
all cells almost contain the same number of nodes contrary to the
simple rectangular grid where certain cells are empty and others are
overpopulated, including up to 1000 nodes, instead of the desired
range of 100 to 200 nodes per cell. The partitioning schemas and
their performance is described in Section 4.

Partitioning the road network by either method requires minimal
effort and time since it only takes into account the nodes’ position
(rectangular grid) or connections (METIS). In that sense, it does
not depend on the underlying SP algorithm.

3.3 Cell Manager
The Cell Manager (CM) implements a storage manager for a

road network based on a spatio-hierarchical partitioning model.
CM manages the creation and management of the main memory
graph data structure for the SP algorithm based on node requests
and by retrieving the respective cells from secondary storage. CM
maintains a simple least-recently used (LRU) cache of cells that
can hold a limited subset of road network graph data (according to
MM limitations). The LRU policy aligns itself well with the SP
algorithm, allowing us to discard “aged” and not frequently used
cells safely.

The architecture of the Cell Manager is shown in Figure 5. The
LRU cache of cells may only store a subset of all available cells of
both cell levels combined. Each cell is stored in MM as a hash table
of nodes. Additionally, each node contains information about its
neighbor nodes and the cell they belong to (for cross edges between
cells).

Cells belonging to UCL are never unloaded, since they are fre-
quently used. As soon as the SP algorithm expands additional
nodes, CM implicitly loads all the necessary cells (if they are not
present in the cache). The CM knows the neighboring cells of a
node. Thus, should a node outside the current cell be expanded and
provided it is not present in CM’s LRU cache of cells, it is retrieved
from secondary storage.

It is easy to use CM with traditional routing algorithms like Di-
jkstra or A∗ (and their bi-directed versions as well). Here however,
LCL including all the network edges is used and we are not able to
exploit CM’s hierarchical features. In that sense, the Cell Manager
is routing algorithm neutral.

With respect to the database schema, the cells of the two cell

Cell Cell
Road Neigh ID ID

Bidir Cat. X Y Weight NodeID UCL LCL
1 5 641901 5480423 42.7 1576795 12 150

Text representation in LCL:
112641901548042342.7,1576795,12,150

Text representation in UCL:
1641901548042342.7,1576795,12

Table 1: Text Representation of same neighbour node in db for different
cell levels

Athens Vienna Germany
(Teleatlas) (Teleatlas) (OSM)

Available road
categories 1-9 1-9 1-13

Total nof nodes 140,633 55,954 3,554,665
Total nof edges 206,428 74,783 4,375,777

Table 2: Available road categories and sizes of road networks graphs

levels are stored in two separate database tables and are indexed by
cell IDs for fast retrieval of the appropriate cell. Each cell is stored
in the database as a set of records, one for each node. For each node,
edge information is stored as a set of neighboring nodes. Table 1
shows the data that is kept, namely, the direction of the edge, edge
category, x and y coordinates of the neighboring node (in meters in
the appropriate projection), neighboring node ID, and cell ID of the
neighboring node in the case of cross edges, i.e., if the neighboring
node belongs to a different cell than the one examined. For space
reasons this data is stored by means of separate attributes but as a
single string for each edge.

Also, for LCL data, should the edge belong to UCL categories,
we also store the UCL cell ID. When the HBA∗ algorithm jumps to
the higher cell level, it needs to know which cell it must retrieve.

The Cell Manager is database neutral, since it does not use any
vendor specific data types and therefore can be implemented on
any standard RDBMS. We have experimented with MySQL [22]
and its MyISAM storage engine and PostgreSQL [29]. Although
MySQL and PostgreSQL showed similar performance, the lack of
foreign key support on MySQL’s MyISAM storage engine and the
overall enterprise and advanced spatial capabilities of PostgreSQL
make PostgreSQL a better choice in the long run and therefore all
computation times reported later in this paper are achieved by using
PostgreSQL.

In conclusion, CM provides a storage manager for road networks
based on spatio-hierarchical partitioning and implementing a LRU
buffering strategy that fits to the road network traversal of the hier-
archical shortest-path algorithms.

4. EXPERIMENTAL SETTING
The experimental evaluation of Section 5 will compare the per-

formance of bi-directed Dijkstra and the HBA∗ algorithm using the
Cell Manager as the storage manager for road networks. The com-
parison will be in terms of (i) loaded cells (= total nof requests
to the storage manager), (ii) total nof nodes loaded (= nof loaded
cells × nodes per cell) and (iii) computation time. Two separate
tiling schemas, rectangular grid and METIS partitioning, will also
be compared in terms of efficiency and speed.

This section details the datasets and overall parameters used in
the experimentation.

4.1 Road Networks
The road networks used in the experimentation were two of city

size (Athens and Vienna) and one of country size (Germany). The
rationale behind this was to assess the performance of the storage
manager and SP algorithm for commercial vs. user-generated net-
works as well as small-scale to large-scale networks.

www.manaraa.com

(a) OSM network (b) Phase I - edge splitting

(c) Phase II - simplification of edges

Figure 6: OSM road network preprocessing

The two city-scale networks [34] cover the greater metropolitan
areas of Athens, Greece and Vienna, Austria. The portion of those
road networks have a respective extent of roughly 25 × 25 km in
each case. The networks comprise nine categories, with 1 corre-
sponding to highways up to 9 for dirt roads.

The country-scale network covering Germany is derived from
OpenStreetMap data [24] provided by Cloudmade [5]. Construct-
ing a routing network from OSM data was a multi-part process
involving (i) using only the edges (and nodes) that belong to cer-
tain road categories [23] and eliminating all other information (e.g.,
buildings) [1] and (ii) preprocessing OSM data for use for rout-
ing. This latter step involves (ii.a) splitting long linestrings, which
are used to represents edges in OSM, into separate routing edges
and assigning new edge IDs to each new routing edge (cf. Phase
I in Figure 6), (ii.b) eliminating OSM nodes that do not constitute
routing edges (Phase II), and (ii.c) assigned a weight to each edge
(original length / road category speed). The conversion of the OSM
Network to a routing network was done using a custom Java tool
developed for this task.

Overall, using a user-generated road network that frequently gets
updated plays to the strengths of the HBA∗ algorithm when used in
connection with the Cell Manager since this approach does not rely
on preprocessing the road network graph.

For all three road networks a travel time metric was used by as-
signing typical speeds to separate road categories. Like the ap-
proach used in [9], we used the largest strongly connected com-
ponent of the available road network graphs. Strong connectivity
of the road networks was checked using JGraphT [16]. Table 2
summarizes the road network properties that were used in our SP
experiments.

4.2 Cell Partitioning
For all road networks two cell levels were used. The Upper Cell

Level (UCL) includes major roads (road categories 1-5 for Athens,
Vienna and road categories 1-7 for Germany). The Lower Cell
Level (LCL) includes the entire road network graph. Assigning
road categories to cell level UCL conformed to the actual mean-
ing of road categories in the respective road networks, i.e., road
categories 1-7 for Germany are basically the same roads as road
categories 1-5 for Athens and Vienna). The tiling schemas used
for each road network aim at having roughly 100 - 200 nodes in a
single cell (cf. Table 4).

Since the rectangular grid uses only the bounding box of the
graph and all other properties like the graph’s structure or density

Road categories Nodes Nodes at UCL /
assigned at UCL at UCL Total nodes

Athens 1-5 20,101 14.3%
Vienna 1-5 17,199 30.7%
Germany 1-7 695,251 19.6%

Table 3: Road categories assigned to cell levels and nodes distribution
Part. Part. Avg. nodes Avg. nodes

schema schema per cell per cell
UCL LCL UCL LCL

Athens 13 x 13 39 x 39 118 92
Vienna 13 x 13 26 x 26 101 82
Germany 64 x 64 128 x 128 169 216

Table 4: Partitioning statistics

of nodes are ignored, we have certain cells that are overpopulated
(more than 1000 nodes per cell) and others that are empty (Table 5).
In contrast, with METIS partitioning the number of nodes per cell
is rather constant (Table 6). We will see that the METIS partition-
ing performed better in every experiment we conducted for all three
road network graphs.

The proposed cell hierarchy is directly linked to the operation
of the HBA∗ algorithm and respective road network properties. As
shown in Table 3, UCL nodes comprise only 14,3%, 30,7% and
19.6% of the total number of nodes for Athens, Vienna and Ger-
many respectively. Since HBA∗ aims for using higher category
roads, it will mostly use the upper cell level (once outside the ini-
tialization buffers area) and is expected to read fewer cells from
secondary storage. This behavior will give HBA∗ the scalability
and speed in memory constrained environments for handling large
road networks. Another important aspect is that for Vienna, where
UCL nodes comprise 30% of the network, HBA∗ in almost all cases
finds optimal results by only utilizing this 30% of the road network
(Table 7).

4.3 Shortest-path Queries
Two different SP query types were used in the experimentation

(cf [32]). In the cold query case for the 1000 random queries that
are executed, the LRU cache (implemented by the Cell Manager) is
cleared after each query. This is an efficient way to determine the
cost of the first query in an un-initialized system. For warm queries
the LRU cache is not cleared. This determines the “true” average
query time for the routing server scenario.

In secondary storage experiments for mobile devices ([12],[32]),
the cold query experiments are the most important ones, since the
device is not expected to perform thousands of SP computations.
In our case, since we emulate the routing server scenario, compu-
tation time of warm query experiments is more important, since the
same server will satisfy thousands of SP requests. Still, cold query
results are conducted for reasons of a fair comparison to related
approaches.

4.4 Performance Environment and Implemen-
tation

Experiments have been conducted on a Intel Core 2 Duo CPU
clocked at 3.00 GHz with 8Gb main memory and 6144 KB L2
Cache, running Ubuntu 10.10 64bit (kernel 2.6.35−28). The HBA∗

algorithm and the Cell Manager have been implemented in Java.
MAX MAX
Nodes Empty Nodes Empty

per cell cells per cell cells
UCL UCL LCL LCL

Athens 2862 89 (53%) 3012 1056 (69%)
Vienna 1085 37 (22%) 1443 192 (28%)

Germany 4694 885 (22%) 3608 3768 (23%)
Table 5: Rectangular grid statistics

www.manaraa.com

MAX MIN MAX MIN
Nodes Nodes Nodes Nodes

per cell per cell per cell per cell
UCL UCL LCL LCL

Athens 126 111 102 84
Vienna 108 95 94 72

Germany 174 158 231 173
Table 6: METIS statistics

Quality Nodes Nodes
of Results (%) Expanded (%) Expanded

Athens 0.26% 38.93% 4,999
Vienna 0.07% 32.52% 1,708

Germany 0.29% 3.72% 11,188
Table 7: Algorithm comparison for the three road networks graphs

64-bit PostgreSQL 9.0.3 was used for the implementation of the
Cell Manager.

Some implementation details and data structures used in the Cell
Manager are as follows. Since the CM may need to unload a cell,
scanned nodes for forward and reverse search are kept in two sep-
arate hash tables. The forward and reverse priority queues were
implemented using the standard heap implementation provided by
Java, augmented by two hash tables. Considering that we used stan-
dard Java data structures, using more effective data structures might
improve the overall performance. Still, querying the database is
the bottleneck in the performance of the Cell Manager and for cold
query experiments (initially empty cache) the times recorded are
mainly due to database speeds.

5. EXPERIMENTAL RESULTS
What follows below are experiments contrasting the performance

of the HBA∗ algorithm with that of bi-directed Dijkstra SP compu-
tation when using the Cell Manager.

In contrast to related work (cf. [32] and [8]), where outputting
the complete shortest path is considered a separate task independent
from the actual SP calculation, this task is included in the costs re-
ported in our experiments. While in other approaches this involves
path-unpacking data structures, the CM directly supports this task
as part of the SP computation.

5.1 SP Quality
The first set of experiments contrasts the performance of HBA∗

SP computation to that of bi-directed Dijkstra in terms of quality
of results and number of nodes totally expanded. These sizes are
independent of the CM’s tiling schema and depend only on the ac-
tual algorithm. Bi-directed Dijkstra is used as the benchmark in all
experiments and relative percent measurements relate to the perfor-
mance on this algorithm.

Although HBA∗ due to hierarchical jumping does not guarantee
optimal results, in reality the results it produces are close to iden-
tical to the optimal bi-directed Dijkstra. Table 7 shows that for
Germany it produces on average 0.3% worse results. Even better
numbers apply to Athens and Vienna with 0.26% and 0.07% worse
results, respectively.

On the other hand, Table 7 shows that in larger networks, HBA∗

expands only 3.7% (11,888 nodes on average per search) of the
nodes that bi-directed Dijkstra expands and utilizes less than 20%
of the road network (cf. Table 3).

5.2 Cold SP queries
The biggest challenge for a secondary storage based data man-

agement is how it performs for cold queries, i.e., experiments where
the cache is initially empty. To assess the performance, we compare
the two tiling schemas, the rectangular grid and the METIS parti-
tioning, in terms of cells and nodes loaded. The former represents

Nodes
Cells loaded Computation Computation

Loaded in MM time (%) time (ms)
Athens

HBA*
(Regular) 8.2% 113.9% 56.2% 56

HBA*
(Metis) 45.51% 50.1% 41.6% 44

Vienna
HBA*

(Regular) 19.2% 86.2% 46.8% 21
HBA*
(Metis) 46.6% 53.14% 43.3% 20

Germany
HBA*

(Regular) 5.3% 9.5% 3.9% 97
HBA*
(Metis) 7.4% 7.1% 3.5% 91

Table 8: Results for rectangular grid and METIS (Cold SP queries)

the number of requests to the CM, whereas the latter stands for the
data fetching into memory. In addition, we also assess the com-
putation time in each case. Bi-directed Dijkstra experiments were
conducted using METIS partitioning. The results for 1000 random
SP queries conducted for each of the three network are presented
in Table 8.

The results show that the combination of HBA∗ and CM provides
average computation times of less than 100ms even for large net-
works. Again, this is achieved with no preprocessing and the entire
road network graph stored on disk. On average for a SP query for
Germany 27,000 nodes are loaded, which is roughly 0.8% of the
total road network graph.

Bi-directed Dijkstra on the other hand had a average computation
time of 5.5s for Germany (which is by a factor of 60 slower than
HBA*) and had to load on average of 515,000 nodes (correspond-
ing to 15% of the total road network graph). Note that, since no
unloads occurred in the Dijkstra experiments so to allow for a fair
comparison to HBA∗ , these computation times will be significantly
worse in an actual server-based routing scenario.

Another obvious result is that METIS partitioning is more effec-
tive that an regular partitioning grid and results in better computa-
tion times, e.g., 5-12 ms for all networks. The METIS effectiveness
is also evident in that for a small road network such as Athens, Di-
jkstra plus METIS loads less nodes than HBA∗ and regular grid
does (cf. 113.9% in Table 8). The METIS effectiveness is cred-
ited to the fact that all cells have about the same size and therefore
the minimal number of nodes is fetched. A regular grid has cer-
tain cells that are overpopulated and therefore many unnecessary
nodes (which are not utilized during the search) are fetched. Re-
sults showed for Germany that METIS loads on average 27,127
nodes per search, whereas using the regular grid partitioning an av-
erage of 35,380 nodes per search (8000 more nodes per search) is
fetched. Additionally, this margin grows even bigger in the worst
case, where METIS loads almost 14,000 fewer nodes than the reg-
ular grid for Germany.

Fluctuations in computation times and fetched number of nodes
loaded in relation to Euclidean distance between the origin and the
destination of search (indicator for SP result size) are presented
in the box and whisker plots of Figures 7 - 10. The figures show
experiments for bi-directed Dijkstra and HBA∗ with METIS par-
titioning. Each box spreads from the lower to upper quartile and
contains the median, the whiskers extend to the minimum and max-
imum value and outliers plotted separately. The results for Athens
are very similar to that of Vienna and are therefore omitted.

The figures clearly show that the number of nodes loaded in MM
follow similar pattern to computation times. This means that the

www.manaraa.com

(a) Bidirected Dijkstra (b) HBA* (METIS)

Figure 7: Cold SP queries - computation times [Vienna]

(a) Bidirected Dijkstra (b) HBA* (METIS)

Figure 8: Cold SP queries - nodes loaded [Vienna]

nodes retrieved from secondary storage are of course the main con-
tributing factor to the performance of SP algorithms in combination
with a storage manager. We also see that the performance indicators
for HBA∗ and CM do not degrade with Euclidean distance beyond
a certain point. Hence, the larger the graph, the greater the advan-
tage of this approach. This is of course due to the use of the UCL
in path computation. The closer the origin and the destination are,
the smaller is the advantage of a hierarchical SP algorithm. HBA∗

in the most disadvantageous query case of Germany loads 15 times
fewer nodes and provides 50 times better computation times than
bi-directed Dijkstra.

5.3 Warm SP queries
The previous section established that the combination of CM and

HBA∗ is efficient even for large road network graphs and all graph
data stored on secondary storage. Still, since we emulate the rout-
ing server scenario, those results will not be the typical case. A
routing server will perform countless SP computations and there-
fore most popular cells will be already loaded in MM. For this
warm query experiments, we performed 1000 SP random queries
to "warm up" the CM’s LRU cache and then performed another set
of 1000 SP queries, for which we then recorded the computation
times. The METIS partitioning was used in all experiments.

Table 9 gives average running times. This table should be com-
pared to Table 8. For example, the avg. running time for Ger-
many has been reduced from 91ms to, now, 13ms, i.e., a speedup
of 7. Similar speedups of 10 and 8 apply to Vienna and Athens, re-

(a) Bidirected Dijktra (b) HBA* (METIS)

Figure 9: Cold SP queries - computation times [Germany]

(a) Bidirected Dijktra (b) HBA* (METIS)

Figure 10: Cold SP queries - nodes loaded [Germany]

Computation Computation
time (%) time (ms)

Athens 40.5% 6
Vienna 40.2% 2

Germany 3.4% 13
Table 9: Warm SP queries - Computation times

spectively. These speedups can be largely attributed to the reduced
number of accesses to the CM. We also see that the margin between
bidirected Dijkstra and HBA* computation times for warm queries
has very slightly increased for all three road networks (i.e., HBA*
performs even better on warm queries).

The computation times as function of the Euclidean distance be-
tween origin and destination for Vienna and Germany are shown in
Figure 11.

We see that the combination of CM and HBA∗ for warm queries
provides computation times similar to typical main memory SP al-
gorithms. This is expected since HBA∗ utilizes only the upper cell
level, which contains only a fraction of the total nodes of the road
network graph and therefore is expected to fit in main memory. Us-
ing a different RDBMS and by adding a second layer of caching on
the database layer (e.g., by using MemCached [20]) could possibly
result in a even faster SP computation.

5.4 Summary
HBA∗ in combination with the Cell Manager provide fast com-

putation times that, in the case of warm queries, are comparable
to SP algorithms utilizing main-memory data structures for road
network graphs. This approach requires no preprocessing and uses
no pre-computed routes (and therefore requires no unpacking rou-
tines). This makes is suitable for dynamic networks in which ei-
ther the edge weights change or the network graph itself (cf. user-
generated road networks). This creates a significant advantage for
this approach over novel SP algorithms, like Contraction Hierar-
chies [8] and Transit Node Routing [3].

6. RELATED WORK
The idea of partitioning a graph for shortest path computation is

not new. Maue et al. [19] partitioned the graph into clusters and

(a) Vienna (b) Germany

Figure 11: Warm SP queries - computation times

www.manaraa.com

precomputed distances between border nodes of clusters in order
to prune their modified Dijkstra’s algorithm with lower and upper
bounds. Möhring et al. [21] also divided the graph into partitions
and gathered information for each edge, on whether this edge is on
a shortest path into a given region. For each edge this information
is stored in a vector (arc-flag vector). Arc-flags are used in their
Dijkstra computation to avoid exploring unnecessary paths.

Both approaches considered METIS as a clustering algorithm
and results are similar to ours in the sense that METIS yields the
highest speed factors. Unfortunately, both those approaches require
extensive preprocessing time. In [21] the preprocessing time for a
3 times smaller road network (106 nodes) than the Germany OSM
network we used ranged from 2 to 16 hours. In [19] preprocessing
time for their Germany network, which was similar in size to ours,
was 9 hours. But even with this preprocessing, SP computation in
[19] for similar sized road networks took on average 62ms, which
is 5 times slower than our warm queries average time (Section 5.3).

Other attempts on using secondary storage for road network data
[12], [32] experimented with running routing requests on mobile
devices. Goldberg and Werneck [12] implemented the ALT algo-
rithm [9] on a Pocket PC and achieved on the largest road net-
work used (North America, 29.9 × 106 nodes) an average running
time of 329s. The preprocessing time required was 208 minutes
for the aforementioned network. Sanders et al [32] implemented a
mobile implementation of Contraction Hierarchies [8] on a Nokia
N800 device and achieved on the European road network (18× 106

nodes) an average running time of 458ms for calculating the com-
plete shortest path. Using pre-unpacked paths, the computation
time for Europe improved to 97ms. The preprocessing time for
mobile contraction hierarchies was 31 minutes for the European
road network. According to [32], the Rearch algorithm [11],[13]
was also implemented on a mobile device yielding query times of
a few seconds.

All previous secondary storage attempts arranged the data in
blocks and accessed them blockwise similar to our cell partition-
ing. They also used the same LRU caching policy. Additionally, in
order to assign nodes to blocks, they exploited the locality proper-
ties of the data, meaning that their nodes were ordered by spatial
proximity (nodes with similar IDs should be nearby). The real road
networks that were used have already similar node ordering imple-
mented (the road networks we used, did not). Still, in [32], in order
to improve spatial proximity of nodes, a modified depth-first search
on the reverse graph to compute a new improved node topological
order was implemented. Such an approach also requires to store
for each node its original ID, so to be able to perform the reverse
mapping. Like the present approach, Sanders et al. [32] divided
nodes in two groups, one group containing more important nodes
and the other containing the rest of the nodes.

The main differences between previous and the present approach
are that here the road category information already present in the
road dataset is used to distinguish important and unimportant nodes
(and therefore no preprocessing was required). Additionally, we
did not use any particular node ordering (in order to avoid any pre-
processing time) for both METIS and the rectangular grid.

Using the road network graph in its original format has obvious
advantages as well. For one, no special path unpacking routines are
required to not only compute but also output the shortest path. For
example, Sanders et al. [32] need to explicitly store pre-unpacked
paths as sequences of original node IDs. In not doing so, the aver-
age SP computation time is 4 times longer (from 97 ms to 458 ms).
Additionally, when using dynamic weights (time-dependent rout-
ing), several versions of the road network (not just edge weights
but new shortcuts and new pre-unpacked paths) need to be com-

puted for all previous preprocessing algorithms.

7. CONCLUSION
This work introduced the Cell Manager (CM) as an efficient,

hierarchical storage manager and companion to hierarchical SP al-
gorithms. In this work, we specifically investigated the HBA∗ al-
gorithm with the CM. The CM uses a spatio-hierarchical tiling
schema to partition the network into a set of tiles according to spa-
tial distribution and road network hierarchies. Two space partition-
ing algorithms, a regular grid partitioning and the METIS [17] were
used.

Our extensive experimentation with two commercial road net-
works (Athens, Vienna) and the crowdsourced OpenStreetMap (OSM)
road network of Germany showed that the CM facilitates fast com-
putation times, efficient memory usage, a minimal number of queries
and almost optimal results when used in connection with the HBA∗

shortest path algorithm. The METIS tiling schema has also proved
to be more effective than the regular grid, both in terms of resulting
computation time and fetched road network size.

In addition, we improved the performance and speed of the ini-
tialization buffer concept introduced in [26] as a means to tune the
efficiency of the HBA∗ algorithm. Overall, HBA∗ and the afore-
mentioned Cell Manager provide an efficient and scalable solution
for serving multiple routing requests in a routing server scenario.
Since the road network graph does not require any SP specific pre-
processing and is used in its original form, both the CM and HBA∗

can also be used with dynamic networks, i.e., a dynamic weight
database commonly referred to as speed profiles and a evolving
road network graph such as obtained by crowdsourcing efforts.

Our ongoing and future work is as follows. Although the Cell
Manager was implemented using a database, it could also be im-
plemented using embedded or object DBs, or native filesystems.
Therefore an implementation of CM and HBA∗ on a mobile device
may be extremely beneficial. On the other hand, since HBA∗ due
to its hierarchical nature provides slightly sub-optimal results we
need to establish how this error can be quantified. The best ap-
proach would be to find an error estimate based on road network
graph properties such as the highway dimension [2]. By predicting
the error of HBA*, we may be able to minimize its limited sub-
optimality by successfully tweaking its parameters.

8. REFERENCES
[1] Osmosis [online].
http://wiki.openstreetmap.org/wiki/Osmosis,
2011.

[2] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck.
Highway dimension, shortest paths, and provably efficient
algorithms. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’10,
pages 782–793, Philadelphia, PA, USA, 2010. Society for
Industrial and Applied Mathematics.

[3] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast routing
in road networks with transit nodes. Science, 316(5824):566,
2007.

[4] P. H. Bovy and E. Stern. Route choice: Wayfinding in
transport networks. Transportation Research Part A: Policy
and Practice, 27(4):338–339, 1993.

[5] CloudMade. Cloudmade downloads [online].
http://downloads.cloudmade.com/, 2011.

[6] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education,
2nd edition, 2001.

www.manaraa.com

[7] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[8] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: faster and simpler hierarchical
routing in road networks. In Proceedings of the 7th
international conference on Experimental algorithms,
WEA’08, pages 319–333, Berlin, Heidelberg, 2008.
Springer-Verlag.

[9] A. V. Goldberg and C. Harrelson. Computing the shortest
path: A* search meets graph theory. In 16th ACM-SIAM
Symposium on Discrete Algorithms, pages 156–165, 2004.

[10] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for A∗

: Efficient point-to-point shortest path algorithms. In
Workshop on Algorithm Engineering and Experiments, pages
129–143, 2006.

[11] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Better
landmarks within reach. In the 9TH DIMACS
Implementation Challenge: Shortest Paths, 2007.

[12] A. V. Goldberg and R. F. F. Werneck. Computing
point-to-point shortest paths from external memory. In
Algorithm Engineering and Experimentation, pages 26–40,
2005.

[13] R. J. Gutman. Reach-based routing: A new approach to
shortest path algorithms optimized for road networks. In
Algorithm Engineering and Experimentation, pages
100–111, 2004.

[14] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics,
4:100–107, 1968.

[15] T. Ikeda, M. Y. Hsu, H. Imai, S. Nishimura, H. S. Moura,
T. Hashimoto, K. Tenmoku, and K. Mitoh. A fast algorithm
for finding better routes by ai search techniques. 1994.

[16] JGraphT. A free java graph library [online].
http://jgrapht.sourceforge.net/, 2011.

[17] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J. Sci.
Comput., 20:359–392, December 1998.

[18] K. Lab. Metis - family of multilevel partitioning algorithms
[online].
http://glaros.dtc.umn.edu/gkhome/views/metis,
2011.

[19] J. Maue, P. Sanders, and D. Matijevic. Goal directed shortest
path queries using precomputed cluster distances. In 5th
Workshop on Experimental Algorithms (WEA), Number 4007
IN LNCS, pages 316–328. Springer, 2006.

[20] Memcached. A distributed memory object caching system
[online]. http://memcached.org/, 2011.

[21] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and
T. Willhalm. Partitioning graphs to speedup dijkstra’s
algorithm. J. Exp. Algorithmics, 11, February 2007.

[22] MySQL. Reference manual. storage engines [online].
http://dev.mysql.com/doc/refman/5.0/en/
storage-engines.html, 2011.

[23] OpenStreetMap. Map features [online]. http:
//wiki.openstreetmap.org/wiki/Map_Features,
2011.

[24] OpenStreetMap. Openstreetmap [online].
http://www.openstreetmap.org/, 2011.

[25] OpenStreetMap. Stats - openstreetmap wiki [online].
http://wiki.openstreetmap.org/wiki/Stats#

OpenStreetMap_Statistics_Available, 2011.
[26] D. Pfoser, A. Efentakis, A. Voisard, and C. Wenk. A new

perspective on efficient and dependable vehicle routing. In
Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems,
GIS ’09, pages 388–391, New York, NY, USA, 2009. ACM.

[27] D. Pfoser, N. Tryfona, and A. Voisard. Dynamic travel time
maps - enabling efficient navigation. In Proceedings of the
18th International Conference on Scientific and Statistical
Database Management, pages 369–378, Washington, DC,
USA, 2006. IEEE Computer Society.

[28] I. Pohl. Bi-directional search. Machine Intelligence, 6, 1971.
[29] PostgreSQL. The world’s most advanced open source

database [online]. http://www.postgresql.org/, 2011.
[30] P. Sanders and D. Schultes. Highway hierarchies hasten

exact shortest path queries. In European Symposium on
Algorithms, pages 568–579, 2005.

[31] P. Sanders and D. Schultes. Engineering fast route planning
algorithms. In Proceedings of the 6th international
conference on Experimental algorithms, WEA’07, pages
23–36, Berlin, Heidelberg, 2007. Springer-Verlag.

[32] P. Sanders, D. Schultes, and C. Vetter. Mobile route
planning. In Proceedings of the 16th annual European
symposium on Algorithms, ESA ’08, pages 732–743, Berlin,
Heidelberg, 2008. Springer-Verlag.

[33] L. Sint and D. de Champeaux. An improved bidirectional
heuristic search algorithm. J. ACM, 24:177–191, April 1977.

[34] Teleatlas. Tele atlas multinet shapefile 4.3.1 format
specifications, 2005.

